Extensions 1→N→G→Q→1 with N=C3 and Q=C32×D5

Direct product G=N×Q with N=C3 and Q=C32×D5
dρLabelID
D5×C33135D5xC3^3270,23

Semidirect products G=N:Q with N=C3 and Q=C32×D5
extensionφ:Q→Aut NdρLabelID
C3⋊(C32×D5) = C32×D15φ: C32×D5/C3×C15C2 ⊆ Aut C390C3:(C3^2xD5)270,25

Non-split extensions G=N.Q with N=C3 and Q=C32×D5
extensionφ:Q→Aut NdρLabelID
C3.1(C32×D5) = D5×C3×C9central extension (φ=1)135C3.1(C3^2xD5)270,5
C3.2(C32×D5) = D5×He3central stem extension (φ=1)456C3.2(C3^2xD5)270,6
C3.3(C32×D5) = D5×3- 1+2central stem extension (φ=1)456C3.3(C3^2xD5)270,7

׿
×
𝔽